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I. INTRODUCTION

Observation of massless Dirac fermion-type excitations in
recent experiments on graphene has generated huge interest
both experimentally and theoretically.1–3 For reviews on
graphene, see Refs. 4–8 and a special issue in Ref. 9.

The intensive theoretical and experimental works have led
to good understanding of the physical phenomena in the
bulk of disorder-free graphene in homogeneous magnetic
field.10,11 Recently, the interest in inhomogeneous magnetic-
field setups has also appeared. Martino et al.12 have demon-
strated that massless Dirac electrons can be confined by in-
homogeneous magnetic field and that a magnetic quantum
dot can be formed in graphene, levels of which are tunable
almost at will. The so-called “snake states” known from
studies13,14 on two-dimensional electron gas �2DEG� have
also attracted interest and their properties have been
discussed in graphene monolayer15,16 and in carbon
nanotubes.17,18 Furthermore, Peeters and co-workers19 have
studied the transmission through complex magnetic barrier
structures.

Semiclassical methods have helped our understanding of
complicated physical phenomena enormously and become a
standard tool of investigation. Not only they offer a simple
and easy-to-grasp classical picture but in many cases, they
can also give quantitative predictions on observables. Yet the
first semiclassical study on graphene systems20 has only very
recently appeared. In Ref. 20 Ullmo and Carmier derived an
expression for the semiclassical Green’s function in graphene
and studied the “Berry-like” phase which appears in the
semiclassical theory. The importance of Berry-like and “non-
Berry-like” phases in the asymptotic theory of coupled par-
tial differential equations and their roles in semiclassical
quantization were previously discussed in Refs. 21–24.

In this work we study a graphene nanoribbon25 in a non-
uniform magnetic field12,15,16 as shown in Figs. 1�a� and 1�b�
and a circular magnetic dot in graphene monolayer12 �see
Fig. 1�c��. We assume that the applied perpendicular mag-
netic field of magnitude �Bz� changes to step-function-like
manner at the interfaces of the magnetic and nonmagnetic
regions and that it is strong enough so that the magnetic
length lB=�� /e�Bz� is much smaller than the characteristic
spatial dimension of the graphene sample. We show that in
this case the semiclassical quantization can predict and can

help understand the main features of the quantum spectra at
the K point4–8 of graphene monolayer and bilayer.

The article is organized in the following way. First, in
Sec. II we give a brief overview of the exact quantum-
mechanical treatment of graphene monolayer and bilayer. We
also discuss some of the technical details of the quantum
calculation regarding the system shown in Fig. 1. Next, in
Sec. III we introduce our semiclassical formalism and when-
ever possible, we give a unified description for graphene
monolayer and bilayer. In Sec. IV we present the results of
the semiclassical quantization for graphene nanoribbons in
inhomogeneous magnetic field and compare it with tight-
binding �TB� and exact quantum calculations. In Sec. V we
apply the semiclassical formalism to a magnetic dot in
graphene monolayer. Finally, in Sec. VI we arrive to our
conclusions.

II. MONOLAYER AND BILAYER GRAPHENE:
QUANTUM-MECHANICAL TREATMENT

In the simplest approximation the Dirac Hamiltonian de-
scribing the low-energy excitations at the K point of the
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FIG. 1. In �a� and �b� the applied perpendicular magnetic field B
is zero in the center region of width 2W. In the case of �a�, in the
left and right regions the magnetic fields point in the same direc-
tions, while in the case of �b�, in the opposite directions. The mag-
nitude B of the magnetic field is the same in both left and right
regions. In the case of Fig. 1�c� a circular nonmagnetic region of
radius R is considered in graphene monolayer, whereas outside this
region there is perpendicularly applied magnetic field of magnitude
B.
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Brillouin zone in monolayer �bilayer� graphene reads

Ĥ� = g�� 0 ��̂x − i�̂y��

��x + i�̂y�� 0
� . �1�

Here �=1�2� for monolayer �bilayer�, and g1=vF
=�3 /2at1 /� is given by the hopping parameter t1 between
the nearest neighbors in monolayer graphene �a=0.246 nm
is the lattice constant in the honeycomb lattice�. Moreover,
g2=−1 /2m� and the mass term is given by m�= t2 /2�g1�2

with t2 being the interlayer hopping between Ã−B sites of
bilayer.11 The operators ��̂x , �̂y� are defined by �̂= ��̂x , �̂y�
= p̂+eA, where p̂= �

i
�
�r is the canonical momentum operator

and the vector potential A is related to the magnetic field

through B=rot A. Due to the chiral symmetry �zĤ��z

=−Ĥ�, where �z is a Pauli matrix, it is enough to consider

the positive eigenvalues of the Hamiltonian Ĥ�.
In Sec. IV we study a graphene nanoribbon of width L

� lB �see Figs. 1�a� and 1�b��. In the central region �x��W
the magnetic field is zero, while for �x��W a nonzero per-
pendicular magnetic field is applied. We assume a step-
function-like change in the magnetic field at x=W and use
the vector potential A�r�= (0,Ay�x� ,0)T to preserve the trans-
lation invariance in the y direction. Other details of the quan-
tum calculation can be found in Refs. 12, 15, and 16.

The magnetic dot system is shown in Fig. 1�c�. It consists
of a graphene monolayer in homogeneous perpendicular
magnetic field with a circular enclosure where the magnetic
field is zero. The circular symmetry of the setup suggests that
one should choose the vector potential in the symmetric
gauge,

A�r� = 	
0 r � R ,

Bz�r2 − R2�
2r 
− sin �

cos �

0
� r � R ,� �2�

where r= �r cos � ,r sin �� is in polar coordinates. One can

show that with this choice the Schrödinger equation Ĥ�	�

=E	� becomes separable in r and �. In the case of graphene
monolayer, requiring the wave function to be normalizable
and continuous at r=R leads to a secular equation, solutions
of which are the quantum eigenenergies �see Eq. �21� in
Ref. 16�.

III. SEMICLASSICAL FORMALISM FOR GRAPHENE

We now give a brief account of our semiclassical formal-
ism. Our discussion goes along the lines of the Refs. 20, 23,
and 24 from where we have also borrowed some of the no-
tations.

We seek the solutions of the Schrödinger equation

Ĥ�	�=E	� in the following form:24

	��r� = 
k�0

��

i
�k

ak
��r�e

i
�

S��r�, �3�

where ak
��r� are spinors and S��r� is the classical action.

Performing the unitary transformations 	�→e− i
�

S��r�	� and

Ĥ�→e− i
�

S��r�Ĥ�e
i
�

S��r�, the Schrödinger equation can be re-
written as

� − E g��
̂x − i
̂y��

g��
̂x + i
̂y�� − E
��a0

��r� +
�

i
a1

��r� + . . .�
= 0. �4�

Here 
̂x= p̂x+
x
0, where 
x

0= px+eAx�r�, px=
�S��r�

�x , and simi-

larly for 
̂y. The WKB strategy26 is to satisfy Eq. �4� sepa-
rately order by order in �.

At O��0� order we obtain

� − E g��
x
0 − i
y

0��

g��
x
0 + i
y

0�� − E
�a0

��r� = 0. �5�

This classical Hamiltonian can be diagonalized with eigen-
values

H�
��p,r� = � g���
x

0�r��2 + �
y
0�r��2��/2 �6�

and eigenvectors V�
��p ,r�. What we have found is that the

O��0� order equation is in fact equivalent to a pair of clas-
sical Hamilton-Jacobi equations,

E − H�
�� �S�

��r�
�r

,r� = 0. �7�

The solution of Eq. �7� when it exists can be found, e.g., by
the method of characteristics.20

For E�0 the eigenvectors of the classical Hamiltonian
given in Eq. �5� are

V�
� =

1
�2

���− 1��−1e−i��

1
� �8�

�here � is the phase of 
x
0− i
y

0�; but the eigenspinor a0
�,�

can be more generally written as a0
�,�=A�

��r�ei�
��r�V�

�

where A�
��r� is a real amplitude and �

��r� is a phase. Equa-
tions for A�

��r� and �
��r� can be obtained from the O��1�

order of Eq. �4�. One can show that the O��1�-order equation
can be written in the following form:20,23,24

�a0
�,��†M̂�a0

�,� = 0. �9�

Using the notation �= ��x ,�y� with �x,y,z being the Pauli
matrices, the operator M̂1 for graphene monolayer is M̂1

=�p̂, while for bilayer it reads M̂2= m̂+ m̂† where m̂
=�p̂�
x

0+ i�z
y
0�.

The imaginary part of Eq. �9� expresses the conservation
of probability since it can be cast into the form of a continu-
ity equation div j�

�=0. Here j�
�=Im�	�

s,��v̂��	�
s,�� is the

probability current carried by the semiclassical wave func-

tion 	�
s,�=a0

�,�e
i
�

S�
�

�v̂�= i
� �Ĥ� ,r� is the velocity operator�.

Similarly to the case of quantum systems described by scalar
Schrödinger equation,26 this continuity equation determines
A�

��r�.
The real part of Eq. �9� allows calculating the phase

�
��r�. The equation determining �

��r� reads
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d�
��r�
dt

= c�
��

2
� �
y

0�r�
�x

−
�
x

0�r�
�y

� = c�
��

2
eBz�r� , �10�

where c1
�=vF

2 /E, c2
�= �1 /m�, and we denote by Bz�r� the

component of the applied magnetic field that is perpendicular
to the graphene sheet. The second equality in Eq. �10� fol-

lows from
�2S��r�
�x�y =

�2S��r�
�y�x .

The Hamiltonian given in Eq. �1� yields a gapless spec-
trum for bilayer graphene. Theoretical and experimental
studies of bilayer graphene11,27 have shown that an electron-
density-dependent gap can exist between the otherwise de-
generate valence and conductance bands �described by H2

−

and H2
+, respectively, in our semiclassical formalism�. As-

suming that the gap is spatially constant, one can take it into

account by considering the Hamiltonian Ĥ2,�= Ĥ2+ �� /2��z
�Ref. 11�. The new term �� /2��z affects only the O��0� cal-

culations, while the operator M̂2 in Eq. �9� remains the same.
Consequently, Eq. �6� is modified to

H2
��p,r� = �

1

2m�
���
x

0�2 + �
y
0�2�2 + �̃2, �11�

where �̃=� /m� and the right-hand side of Eq. �10� for �

=2 is multiplied by �=�1− �2

4E2 .
It was shown in Refs. 21, 23, and 24 that for

N-dimensional integrable systems where the particles have
an internal, e.g., spin or electron-hole degree of freedom, one
can derive a generalization of the Einstein-Brillouin-Keller
�EBK� �Ref. 26� quantization of scalar systems. In general,
the quantization conditions read

1

�
�

�j

pdr + � j = 2��nj +
� j

4
� . �12�

Here � j, j=1. . .N are the irreducible loops on the N-torus in
the phase space, njs are positive integers, � js are the Maslov
indices26 counting the number of caustic points along � j, and
finally � js measures the change in the phase of the spinor
part of the wave function as the system goes around a loop
� j. The systems we are considering �see Fig. 1� are more
simple in a way that the Schrödinger equation is separable if
the vector potential A�r� is chosen in an appropriate gauge,
which takes into account the symmetry of the setup �i.e.,
translational symmetry in the case of Figs. 1�a� and 1�b� and
rotational in the case of Fig. 1�c��. The magnetic field Bz in
Eq. �10� will depend on only one of the �generalized� coor-
dinates. Let us denote this coordinate by x1, the conjugate
momentum by p1, and the other coordinate �conjugate mo-
mentum� by x2 �p2�. It turns out that due to the symmetry of
the system, �r� will also depend only on x1 �Ref. 28�.
Therefore one of the two quantization conditions, involving
the coordinate x2 and the conjugate momentum p2, is exactly
the same as it would be for a scalar wave function �this
corresponds to �2=0 in Eq. �12��. In the quantization condi-
tion involving p1 and x1, however, the phase �1 is in general
not zero but is determined by Eq. �10�,

�1 = �
� = c�

��

2
� Bz„x1�t�…dt . �13�

For systems with piecewise constant magnetic-field pro-
files such as those shown in Fig. 1, the calculation of �

�

simplifies to �
�=c�

� �
2 lBz,lTl. Here Tl is the time that the

particle spends during one full period of its classical motion
in the lth region where the strength of the perpendicular
component of the magnetic field is given by Bz,l. In the semi-
classical picture �r� changes only when the particle, during
the course of its classical motion, passes through nonzero
magnetic-field regions; and this phase change in the wave
function needs to be taken into account in the semiclassical
quantization.

IV. BOUND STATES IN GRAPHENE NANORIBBONS

We now apply the presented semiclassical formalism to
determine the energy of the bound states in inhomogeneous
magnetic-field setups in graphene nanoribbons �see Figs.
1�a� and 1�b��. Throughout the rest of the paper we will only
consider H�

+ corresponding to positive energies; H�
− would

describe negative energies. These, however, do not need to
be considered separately due to the chiral symmetry of the
Hamiltonian as explained in Sec. II.

Using the Landau gauge A= (0,Ay�x� ,0)T the translation
invariance of the system in the y direction is preserved and,
therefore, the solution of the Hamilton-Jacobi equation Eq.
�7� can be sought as S��r�=S��x�+ pyy, where py =const.
Since the classical motion in the y direction is not bounded,
py =�ky is not quantized; it appears as a continuous param-
eter in our calculations. In contrast, the motion in the x di-
rection is bounded due to the x-dependent magnetic field
Bz�x�. Therefore the quantization condition reads

1

�
� p��x�dx + � = 2��n + 1/2� . �14�

�Note that the Maslov index is �=2.� It is useful to introduce
at this point the following dimensionless parameters: the
width of the nonmagnetic region w̃=W / lB and the guiding

center coordinate X̃=kylB, both in units of lB �which is de-
fined in Sec. II�. Throughout this paper we will use w̃=2.2.

We start our discussion with the magnetic waveguide con-
figuration shown in Fig. 1�a� in graphene monolayer. Intro-

ducing the dimensionless energy Ẽml=ElB /�vF, one finds

that for �X̃�� Ẽml there is one turning point in each of the left
and right magnetic regions. A simple calculation gives 1
=� and writing out explicitly the result of the action integral
from Eq. �14�, it follows that

4Kmlw̃ + �Ẽml
2 = 2n�, n = 1,2, . . . . �15�

Here we have introduced the dimensionless wave number

Kml=�Ẽml
2 − X̃2 and note that the phase change in the wave

function due to �x� cancelled the phase contribution coming

from the Maslov index. Furthermore, if X̃� Ẽml �X̃�−Ẽml�
there are two turning points in the left �right� magnetic re-
gion. One finds that also for this case 1=�, which again
cancels the contribution from the Maslov index; thus, for

�X̃�� Ẽml the semiclassical quantization yields
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Ẽn = �2n, n = 1, 2, . . . , �16�

i.e., the energies are independent of X̃ �and hence of ky�. This
is the same as the exact quantum and the semiclassical20

results for the relativistic Landau levels �LLs� in homoge-
neous magnetic field. �From the exact quantum calculations16

it is known that a zero-energy state also exists in this system.
Formally, from Eq. �16� one can obtain a zero-energy state
by assuming that n=0 is admissible. However, Eq. �8� and
hence Eq. �10� are only valid for E�0. Therefore we ex-
clude n=0.�

Comparison of the semiclassical eigenvalues with the re-
sults of exact quantum calculations is shown in Fig. 2. �For
details of the quantum calculation see, e.g., Ref. 16.�

The agreement between the quantum and semiclassical
calculations is in general very good, especially for higher

energies. For lower energies and �X̃�� Ẽml, one can observe
quantum states which are almost dispersionless and their en-
ergies are very close to the nonzero-energy LLs in graphene
monolayer. Semiclassically, these states are described by Eq.
�16�. Although the zero-energy state of the spectrum16 cannot
be accounted for by our semiclassics, an expression for the
gap between the zero- and the first nonzero-energy states can

be easily obtained by putting n=1 and X̃=0 in Eq. �15�, and
it gives a rather accurate prediction as can be seen in Fig. 2.
The presented semiclassical method cannot describe those

quantum states that correspond to �X̃�� Ẽml �see the dashed
line in Fig. 2�, i.e., when one of the turning points is in the
area of rapid spatial variation of the magnetic field.

For comparison, we have also calculated the quantization
condition for graphene bilayer using the classical Hamil-
tonian given in Eq. �11� and the general quantization condi-

tion shown in Eq. �14�. For Ẽbl� X̃2 /2, where Ẽbl=
E�
��c

and
�c= �eB�

m being the cyclotron frequency, it reads

2Kblw̃ + �Ẽbl = ��n −
1

2
�, n = 2,3, . . . . �17�

Here Kbl=�2Ẽbl− X̃2 and we have taken into account that in
this case, 2=2�. For �=1 �where � has been defined after
Eq. �11�� this result is very similar to what one would obtain

for a 2DEG—the only difference being that for 2DEG, one
would have +1 /2 on the right-hand side of Eq. �17�. This
similarity is a consequence of having a parabolic dispersion
relation E�k� close to the Fermi energy in both a 2DEG and
graphene bilayer systems. We let the integer quantum num-
ber n to run from n=2 in Eq. �17� for the following consid-
erations: from Ref. 20 we know that in a more simple case of
homogeneous magnetic field, the fourfold-degenerate29 LL

of the quantum calculations11 at Ẽbl=0 �corresponding to n
=0 and 1� cannot be correctly described semiclassically; but

for LLs having Ẽbl�0 the agreement between the semiclas-
sical and quantum results is qualitatively very good. Simi-
larly, we expect that in our case the semiclassical approxi-
mation should only work for n�2. We have found that this
is indeed the case �see Fig. 3� where the solid lines show the
bands obtained by TB calculations30 and the circles are cal-
culated using Eq. �17� for n�2 �we have taken �=1�. The

Ẽbl�0 energy bands for Ẽbl� X̃2 /2 are remarkably well de-
scribed by Eq. �17� �note however that like in the homoge-
neous magnetic-field case, there is a fourfold-degenerate

state at Ẽbl=0�. For Ẽbl� X̃2 /2 the bands of TB calculations
again become almost dispersionless and level off very close
to the LLs of bilayer graphene in homogeneous field.11 The
semiclassical expression for the energy levels in this regime

of X̃ is

Ẽbl = �n − 1/2�, n = 2,3, . . . , �18�

which is again a good approximation of the quantum result.
Our semiclassics cannot correctly account for states having

X̃2 /2� Ẽbl, i.e., when one of the turning points is in rapidly
varying magnetic-field region.

We now turn to the semiclassical study of the system
depicted in Fig. 1�b� where the magnetic field is reversed in
one of the regions. It was shown in Refs. 15 and 16 that
peculiar type of current carrying quantum states called snake
states exist close to the K point of graphene for this
magnetic-field configuration. These states can also be de-
scribed by the Dirac Hamiltonian and are therefore amenable
to semiclassical treatment.

FIG. 2. Results of exact quantum calculations �solid lines� and
the semiclassical approximation given by Eqs. �15� and �16�
�circles� as a function of ky �in units of lB� for graphene monolayer.

The dashed lines indicate �X̃�= Ẽml �see text�.

FIG. 3. Results of exact quantum calculations �solid lines� and
the semiclassical approximation given by Eqs. �17� and �18�
�circles� as a function of ky �in units of lB� for graphene bilayer. The

dashed lines indicate X̃2 /2= Ẽbl �see text�.
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We start the discussion with the graphene monolayer case.

There are no turning points and hence no states if −X̃� Ẽml.

For �X̃�� Ẽml there is one turning point in each of the nonzero
magnetic-field regions. In contrast to the symmetric
magnetic-field configuration �Fig. 1�a��, we find that for one
full period of motion 1=0, the contributions of the two
magnetic-field regions—pointing in the opposite direction—
cancel. Using Eq. �14� the quantization condition is

Kml�2w̃ + X̃� + Ẽml
2 �arcsin� X̃

Ẽml

� +
�

2� = ��n + 1/2� ,

n = 0,1,2, . . .

�19�

Note that unlike the case of Eq. �15�, here a solution for n
=0 also exists. Moreover, for X̃� Ẽml there are two turning
points both in the left �we denote them by x1

L and x2
L� and in

the right �denoted by x1
R and x2

R� magnetic regions. The quan-
tization using x1

L and x2
L leads to the same result as in Eq.

�16�, i.e., Ẽn,L=�2n, while using x1
R and x2

R gives the se-

quence Ẽn,R=�2�n+1�. The difference between Ẽn,L and Ẽn,R
is due to the fact that the sign of the phase contribution from
�x� depends on the direction of the magnetic field, i.e., it is
+� when x1

L and x2
L are used in the calculations and −� when

x1
R and x2

R are used �see Eq. �10��. From these considerations
it follows that if n=0,1 ,2 , . . . as we assumed in Eq. �19�,
the two sequences Ẽn,L and Ẽn,R give rise to twofold-

degenerate dispersionless states at Ẽml=�2,�4,�6. . . and a

nondegenerate one at Ẽml=0. We have to exclude, however,

the Ẽml=0 solution �see the discussion below Eq. �16��. The
degeneracy of the dispersionless part of the spectrum can
also be understood in the following way. One can easily
show that for this magnetic field profile the effective poten-
tial in the Hamiltonian H1

+ given by Eq. �6� has a “Mexican

hat” shape for X̃�0 with two symmetric minima, and the

energy barrier between these two minima is exactly X̃.

Hence, if Ẽml� X̃�0, i.e., when the particle’s energy is
larger then the energy barrier, it is confined by an effectively

single well potential; but for X̃� Ẽml there is a degeneracy
due to the fact that the Dirac particles are localized around
one or the other minimum.

The results of quantum and of semiclassical calculations
are shown in Fig. 4. �For details of the quantum calculation
see, e.g., Ref. 15.� As one can see the agreement is again

very good for Ẽml�0.4 except when X̃� Ẽml �see the discus-
sion above Eq. �17��. The twofold-degenerate dispersionless

quantum states can be clearly seen for X̃� Ẽml. However,

when X̃� Ẽml the tunneling between the states localized
around the minima of the above explained effective potential
removes the degeneracy and produces the small splittings of
the states, which can also be observed. States having ener-

gies 0� Ẽml�0.25 cannot be described by our semiclassics
and note that in the lowest-energy band corresponding to n
=0 in Eq. �19�, nonphysical solutions also appear along with

the genuine ones for 0.25� Ẽml�0.4. This clearly indicates
the limits of applicability of our approach, i.e., it does not
work for energies close to the Dirac point.

We end our discussion of the bound states in monolayer
and bilayer graphene nanoribbons with the bilayer system
corresponding to the previous monolayer example, e.g., for

the magnetic-field setup of Fig. 1�b�. For −X̃��2Ẽbl there
are no turning points and hence no states. The quantization

condition for X̃2 /2� Ẽbl can simply be obtained from Eq.

�19� by changing Ẽml→�2Ẽbl and Kml→Kbl �Kbl is defined

after Eq. �17��. Finally, for X̃2 /2� Ẽbl our semiclassics pre-
dicts a sequence of doubly degenerate dispersionless energy

levels at Ẽbl= �n−1 /2�, n=2,3 , . . ., in a similar fashion as in

the monolayer case. As one can see in Fig. 5 for Ẽbl�0.8,
the semiclassical approximation captures all the main fea-
tures of the TB calculations quite well, apart from the region

where X̃2 /2� Ẽbl for X̃�0 �see the discussion below Eq.
�18��. Dispersive states corresponding to n=0 and 1 can also

be described semiclassically if Ẽbl�0.8 �see the lowest two
bands in Fig. 5�, but for smaller energies nonphysical solu-

tions along with the genuine ones do appear and for Ẽbl
�0.1 �i.e., very close to the Dirac point� no quantum states

FIG. 4. Results of exact quantum calculations �solid lines� and
the semiclassical approximation given by Eq. �19� �circles� as a
function of ky �in units of lB� for graphene monolayer. The dashed

line indicates X̃= Ẽml �see text�.

FIG. 5. Results of TB calculations �solid lines� and a semiclas-
sical approximation �circles� for graphene bilayer as a function of ky

�in units of lB�. The semiclassical approximation can be obtained
from Eq. �19� by a transformation described in the main text. The

dashed line indicates X̃2 /2= Ẽbl �see text�.
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can be described with the presented semiclassical approach.

V. BOUND STATES OF A MAGNETIC
QUANTUM DOT

Our last example is the magnetic dot in graphene mono-
layer discussed in Ref. 12 and shown in Fig. 1�c�. We assume
that the magnetic field is zero in a circular region of radius R
while outside this region, a constant perpendicular field is
applied.

Working in polar coordinates r and �, since the vector
potential of Eq. �2� preserves the circular symmetry of the
problem, the � coordinate is cyclic and therefore one can
seek the solution of Eq. �7� as S�r�=Sr�r�+ p��, where p�

=const. Moreover, in � coordinate the motion is free rotation
and, hence, the quantization condition for p� is simply

�
0

2�

p�d� = 2��m, m = 0, � 1, � 2 . . . , �20�

hence, it is clear that the p� quantization reads p�=�m.
The second quantization condition can generally be writ-

ten as 1
��pr�r ,m�dr+1=2��n+1 /2� because the Maslov in-

dex is �=2 and pr=
�Sr�r�

�r . We now introduce the dimension-

less variable �= r2

2lB
2 and the parameters �= R2

2lB
2 = R̃2 /2 and m̃

=m−�. One can see that � is basically the missing magnetic
flux that can be associated with the dot. The phase accumu-
lated between two points �1 and �2 inside the dot �where
Bz�r�=0� is given by

Sr
B=0��1,�2� =

�

2
�

�1

�2

d�
�2Ẽ2� − m2

�
, �21�

while between two points in the nonzero magnetic-field re-
gion by

Sr
B�0��1,�2� =

�

2
�

�1

�2

d�
�− �2 + 2�Ẽ2 − m̃�� − m̃2

�
. �22�

�The � factor in the above expressions appears because in the
calculation, we already took into account the quantization of
p�, see Eq. �20�.� The integrals in Eqs. �21� and �22� can be
analytically calculated but the resulting expressions are too
lengthy to be recorded here.

As a next step to obtain a semiclassical quantization rule,
we proceed with the analysis of the classical dynamics along
the lines of Ref. 31. Calculating the radial velocity vr�r�
=

�vF

E pr in the magnetic region, one finds that for Ẽ2�2m̃
there can be two turning points in the radial motion, which
we denote by �0

− and �0
+. In terms of the dimensionless pa-

rameters R̃c= Ẽ and X̃=�R̃c
2−2m̃ �the radius of the classical

cyclotron motion and the guiding center coordinate, respec-
tively, both in the units of lB� the turning points can be writ-

ten as �0
�= 1

2 �R̃c� X̃�2. With regard to �, there are then two
possible cases:

�i� The first case is when ���0
− ,�0

+ �or equivalently, �

�
m2

2Ẽ2
� and, therefore, the radial motion is confined entirely to

the magnetic region. Calculation of 1 gives a phase +�,

which cancels the phase contribution from the Maslov index.
Hence the quantization condition is 2Sr

B�0��0
− ,�0

+� /�=2n�,
where Sr

B�0��0
− ,�0

+� is calculated using Eq. �22�. Explicitly,

the energy levels Ẽn,m are given by

Ẽn,m = �2n + �m̃� + m̃ . �23�

This result is very similar to what one would obtain from
exact quantum calculations for a homogeneous magnetic

field where the relativistic Landau levels are given by Ẽn,m
qm

=�2n+ �m�+m. Note however that in Eq. �23� instead of the
integer quantum number m, the noninteger m̃=m−� appears.
From Eq. �23� it is clear that for m̃�0 the energy bands are

at Ẽn=�2n, n=1,2 , . . ., and they do not depend on � and m̃.
�As in the nanoribbon case, we exclude n=0 because that

would give Ẽn=0.� These �-independent sections are readily
observable in the energy bands corresponding to m=−2 in
Fig. 6�a�. On the other hand, for m̃�0 and ��m an approxi-

0 1 2 3 4 5
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0.5

1

1.5

2

2.5

3

δ

E

b)

B

a)

FIG. 6. �a� Results of exact quantum calculations �solid lines�
for the m=−2 energy bands as a function of the missing flux �. The
results of the semiclassical quantization ��� are obtained from Eq.

�23� for Ẽ�
�m�
�2�

and m̃�0. For Ẽ�
�m�
�2�

the circles ��� show the
semiclassical results calculated using Eqs. �24� and �25�. The

dashed line shows the Ẽ= �m�
�2�

function which separates the cases �i�
and �ii� detailed in the main text; �b� shows a cartoon of a classical

orbit in the parameter range Ẽ�
�m�
�2�

and m̃�0.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

δ

E

a) b)

B

FIG. 7. �a� Results of exact quantum calculations �solid lines�
for the m=2 energy bands as a function of the missing flux �. The
results of the semiclassical quantization ��� are obtained from Eq.

�23� for Ẽ�
�m�
�2�

and m̃�0. For Ẽ�
�m�
�2�

the circles ��� show the
semiclassical results calculated using Eqs. �24� and �25�. The

dashed line shows the Ẽ= �m�
�2�

function which separates the cases �i�
and �ii� detailed in the main text; �b� shows a cartoon of a classical

orbit in the parameter range Ẽ�
�m�
�2�

and m̃�0.
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mately linear dependence on � of the bands corresponding to
different m is predicted by Eq. �23� and this can also be
observed, see Fig. 7�a�. From classical point of view in the

parameter range m̃�0 �which implies X̃− R̃c� R̃�, the clas-
sical orbits are such that they do not encircle the zero
magnetic-field region �see Fig. 6�b��. They are just like orbits
in homogeneous magnetic field and this helps to understand
why the quantum states corresponding to the same parameter
range are reminiscent of dispersionless Landau levels. Con-

versely, for m̃�0 �which implies R̃c− X̃� R̃� the classical
orbits do encircle the zero magnetic-field region and, there-
fore, the energy of the corresponding quantum states depend
on the missing flux � �see the cartoon shown in Fig. 7�b� for
illustration of the classical orbits�.

�ii� The second case is when �0
−����0

+, which happens if
��

m2

2Ẽ2
. The classical motion is no longer confined to the

magnetic region but also enters the nonmagnetic dot. The
turning point in the nonmagnetic region is at �0= m2

2Ẽ2
��.

Since the Maslov index is �=2, the quantization condition
can be written as

2

�
�Sr

B=0��0,�� + Sr
B�0��,�0

+�� + 1 = 2��n + 1/2� . �24�

Here Sr
B=0��0 ,�� and Sr

B�0�� ,�0
+� can be calculated using Eqs.

�21� and �22�, respectively, but the resulting expressions are
again too lengthy to be presented here. Moreover, from Eq.
�13� we find that

1 =
�

2
+ arcsin� Ẽ2 − m̃ − �

�Ẽ2�Ẽ2 − 2m̃�
� . �25�

One can see that here in general, 1�� and, therefore, it
does not cancel the contribution of the Maslov index.

As one can observe the overall agreement of the exact
quantum and of the semiclassical calculations shown in Figs.
6 and 7 is good, especially for higher energies. According to
the exact quantum calculations,12 there is also a zero-energy
state but this cannot be described by our semiclassics.

VI. CONCLUSIONS

To conclude, using semiclassical quantization we have
studied the spectrum of bound states in inhomogeneous
magnetic-field setups in graphene monolayer and bilayer. We
have found that a semiclassical quantization, which takes
into account a Berry-like phase, can indeed explain all the
main features of the exact quantum or numerical TB calcu-
lation. In particular, we have studied graphene monolayer
and bilayer nanoribbons in magnetic waveguide configura-
tion and also in a configuration when snake states can exist.
Besides, we have discussed the magnetic dot system in
graphene monolayer. For the considered stepwise constant
magnetic-field profile, we have derived semiclassical quanti-
zation equations. In the case of graphene monolayer, we have
compared the resulting semiclassical eigenenergies with
quantum-mechanical ones obtained from the corresponding
Dirac equation. For graphene bilayer the results of the semi-
classical quantization and numerical TB calculations have
been compared. In all the cases a good agreement has been
found except for energies very close to the Dirac point. We
have shown that the main features of the spectrum depend on
whether the classical guiding center coordinate is in the non-
magnetic or in the magnetic-field region.

Assuming homogeneous magnetic field, the energy of the
Landau levels in semiclassical approximation was calculated
in Ref. 20. Our work can be considered as a generalization of
these calculations to a class of nonhomogeneous magnetic-
field setups, where due to the symmetry of the system, the
Berry-like phase appearing in the semiclassical theory affects
only one of the quantization conditions.
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